The Artinian property of certain graded generalized local chohomology modules
نویسندگان
چکیده مقاله:
Let $R=oplus_{nin Bbb N_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,frak{m}_0)$, $M$ and $N$ two finitely generated graded $R$-modules. Let $t$ be the least integer such that $H^t_{R_+}(M,N)$ is not minimax. We prove that $H^j_{frak{m}_0R}(H^t_{R_+}(M,N))$ is Artinian for $j=0,1$. Also, we show that if ${rm cd}(R_{+},M,N)=2$ and $tin Bbb N_0$, then $H^t_{frak{m}_0R}(H^2_{R_+}(M,N))$ is Artinian if and only if $H^{t+2}_{frak{m}_0R}(H^1_{R_+}(M,N))$ is Artinian.
منابع مشابه
the artinian property of certain graded generalized local chohomology modules
let $r=oplus_{nin bbb n_0}r_n$ be a noetherian homogeneous ring with local base ring $(r_0,frak{m}_0)$, $m$ and $n$ two finitely generated graded $r$-modules. let $t$ be the least integer such that $h^t_{r_+}(m,n)$ is not minimax. we prove that $h^j_{frak{m}_0r}(h^t_{r_+}(m,n))$ is artinian for $j=0,1$. also, we show that if ${rm cd}(r_{+},m,n)=2$ and $tin bbb n_0$, then $h^t_{frak{m}_0r}(h^2_{...
متن کاملAsymptotic Behaviour and Artinian Property of Graded Local Cohomology Modules
In this paper, considering the difference between the finiteness dimension and cohomological dimension for a finitely generated module, we investigate the asymptotic behavior of grades of components of graded local cohomology modules with respect to irrelevant ideal; as long as we study some artinian and tameness property of such modules.
متن کاملFiniteness of certain local cohomology modules
Cofiniteness of the generalized local cohomology modules $H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ witha specified property. Furthermore, Artinianness of $H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an idea...
متن کاملGeneralized Local Homology Modules of Complexes
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
متن کاملTame Loci of Generalized Local Cohomology Modules
Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 41 شماره 2
صفحات 423- 428
تاریخ انتشار 2015-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023